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Abstract— When executing whole-body motions, humans are
able to use a large variety of support poses which not only
utilize the feet, but also hands, knees and elbows to enhance
stability. While there are many works analyzing the transitions
involved in walking, very few works analyze human motion
where more complex supports occur.

In this work, we analyze complex support pose transitions
in human motion involving locomotion and manipulation tasks
(loco-manipulation). We have applied a method for the detection
of human support contacts from motion capture data to a large-
scale dataset of loco-manipulation motions involving multi-
contact supports, providing a semantic representation of them.
Our results provide a statistical analysis of the used support
poses, their transitions and the time spent in each of them. In
addition, our data partially validates our taxonomy of whole-
body support poses presented in our previous work.

We believe that this work extends our understanding of
human motion for humanoids, with a long-term objective
of developing methods for autonomous multi-contact motion
planning.

I. INTRODUCTION

While efficient solutions have been found for walking in
different scenarios [1], [2], including rough terrain and going
up/down stairs, humanoid robots are still not able to robustly
use their arms to gain stability, robustness and safety while
executing locomotion tasks.

Robotics has approached this problem from a computa-
tional point of view ([3], [4], [5], [6], [7]). However, due to
the complexity of the problem, these methods are still not
completely successful. In this work, we propose to take a step
back to analyze human motion in order to gain understanding
of the processes humans make when using multi-contacts.

Robotics in general, but particularly humanoid robotics,
has always been inspired by biological human experience
and the anatomy of the human body. However, human
motions involving support contacts have almost not been
studied [8] and even less how healthy subjects choose to
make use of contacts with support surfaces. Works like [9]
show that in a standing posture, reaching for a support
contact provides augmented sensory information, reducing
sway even if it is just through a ”light touch”. This shows that
the ability of reaching for supports can be crucial to increase
robustness in tasks that require balance like walking or
general locomotion, but also for increasing maneuverability
in complex manipulation tasks. Nevertheless, to execute such
tasks in an autonomous way, we need to better understand
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Fig. 1. When performing locomotion (a), manipulation (b), balancing (c)
or kneeling (d) tasks, the human body can use a great variety of support
poses to enhance its stability. Automatically detecting such support contacts
allows for an automatic identification of the visited support poses and their
transitions.

the principles of whole-body coordination in humans, the
variety of supporting whole-body postures available and how
to transition between them.

In this work, we analyze real human motion data cap-
tured with a marker-based motion capture system and post-
processed using our unifying Master Motor Map (MMM)
framework [10], [11], to gain information about the poses
that are used while executing different locomotion and ma-
nipulation tasks like those shown in Fig. 1. The analysis
presented allows us to quantify the amount of time spent in
each pose, classify transitions depending on their duration,
and build a graph of pose transitions that can enlighten
the difficult problem of finding motions that utilize multi-
contacts to balance.

This paper is organized as follows. Section II briefly
reviews related works. In Section III, we introduce our
methodology to detect support poses. In Section IV, we apply
our method to a large set of motions and analyze the resulting
data. Finally, Section V summarizes our contributions and
gives prospects of future work.



II. RELATED WORK

There are very few works studying how we transition
between different support poses when performing move-
ments. Contributions analyzing human data focus on specific
postures for specific tasks, such as how to optimally hold on
a handrail on a moving vehicle [12] or use hand support
to better resist perturbations [13]. However, other areas
of robotics like grasping have greatly benefited from the
study of human hand poses. Three decades ago, they started
analyzing human data to simplify the space of possible grasps
[14], [15]. Works like [16], [17] show that, although the hand
posture space is highly dimensional, the majority of useful
grasps can be described by a small number of discrete points
in this space. Grasp taxonomies have been very relevant
and successful [14], [18], [19], providing a wide variety of
applications in grasp synthesis and autonomous grasp plan-
ning. Only a few works have tried to extend these concepts
to whole-body motion [20]. In our recent work [21], we
have proposed a taxonomy of whole-body poses that use the
environment to balance based on a combinatorial approach of
all the possible contacts using humanoid limbs. The current
work provides a partial validation of the proposed taxonomy
using real human data.

From the robotics community, there has been significant
interest in improving balance control procedures beyond the
double foot support [3], [22] with efficient path planners [23],
[6] that need to solve computationally costly optimization
problems under constraints [5]. However, these solutions are
still not optimal, as planners are either very computationally
costly [6], [23], [7] or only locally optimal and not applicable
in an autonomous way [3], [4], [5]. Solutions to deal with
the autonomous decision making [24], [25], [26] provide
interesting approaches but still do not scale to complex
scenes. Each of these layers of the problem is a demanding
problem on its own and the connection between all of them
remains as one of the future challenges in robotics.

Our work relates to this literature in the long-term goal,
but we want to approach the problem from a different point
of view. Relying on human motion provides us with many
transition motions that can be transferred to robots [27],
[28], [29] and stored as, e.g., dynamic movement primitives
(DMP) [30]. There have been many works on DMPs for
the whole body, showing that they can be adapted to differ-
ent situations and sequenced [31], [32], [33]. Other works
do motion synthesis [34], [35], usually based on different
segmentation techniques. There has been extensive work on
these segmentation techniques for human motion [36], [37],
[38], [39], [40].

Existing works to detect support contacts use video data
[41], tracking algorithms to estimate ground reaction forces
[42], markers attached to the shoes to detect only floor
contacts [43] or minimal oriented bounding boxes to detect
links in contact without assuming environmental knowledge
[44].

Fig. 2. Setup used for motion capture.

III. DETECTION OF WHOLE-BODY POSES AND
SEGMENTATION

A. Motion Acquisition

We captured 121 human motions using an optical marker-
based Vicon MX motion capture system with 10 cameras.
A total of 56 passive reflective markers were attached to
the human subject at characteristic anatomical landmarks.
Subject was asked to perform different whole-body motions,
described in Table II. Fig. 2 illustrates the setup used for
motion capture. Details about the procedures used for motion
acquisition, e.g. the marker set, can be found in [11] and
online1. After recording, the human motions were normalized
and post-processed as described in Section III-B.

In addition to the human motion, we also captured the po-
sition and movement of objects and environmental elements.
To allow the reconstruction of object trajectories, a minimum
number of three additional markers were placed on each
object in a non-collinear manner. Using manually created
object models, object trajectories can then be estimated from
the marker trajectories which allow the analysis of interaction
between the human subject and these environmental entities
[40]. The KIT Whole-Body Human Motion Database [11]
contains a large set of motions using this approach, providing
raw motion capture data, corresponding time-synchronized
video recordings and processed motions.

B. Motion Processing

The Master Motor Map (MMM) [45], [10] provides
an open-source framework for capturing, representing and
processing human motion. It includes a unifying reference
model of the human body for the capturing and analysis
of motion from different human subjects. The kinematic
properties of this MMM reference model are based on
existing biomechanical analysis by Winter [46] and allow
the representation of whole-body motions using 104 degrees
of freedom (DoF): 6 for the root pose, 52 for the body torso,
extremities and head, and 2·23 for the hands. For the analysis
in this work, we have excluded the hand joints.

To be able to extract semantic knowledge from the
recorded motions, we first need to transfer these motions
to the MMM reference model, i.e. reconstruct joint angle
trajectories from the motion capture marker trajectories in
Cartesian space. For this purpose, for every motion capture

1https://motion-database.humanoids.kit.edu/
marker_set/

https://motion-database.humanoids.kit.edu/marker_set/
https://motion-database.humanoids.kit.edu/marker_set/


TABLE I
EVALUATION OF ERROR OF SEGMENTATION METHOD

Description # Motions Av. # Poses Av. # Incorrect Av. # Missed Notes
Locomotion tasks
downstairs w. handle 10 12.3 0.1 2.5 m: d.f.s. i: lost hand support
upstairs w. handle 19 17.05 0.26 0.16 m: d.f.s. i: lost hand supports
upstairs, turn and downstairs 7 29.714 0.143 4 m: d.f.s. i: lost hand support
walks w. hand sup. to avoid obst. 5 13.2 0.4 2.2 m: d.f.s. i: lost hand support
walk over beam w. handle 5 19.4 0.2 0
Loco-Manipulation tasks
kick box with foot w. hand sup. 6 12.5 0.33 1.167 m: d.f.s. i: lost hand support
lean to place a cup on table 6 15.33 0.17 0 i: incorrect foot support
lean to pick a cup on table 5 5 0 0
lean to pick a cup in air 7 15 0.14 0 i: lost hand support
lean to wipe 6 12.5 0.5 0 m: d.f.s. at start
bimanual pick and place 6 13.833 0.833 0.667 m: d.f.s. i: lost foot support
pick up from floor w. hand sup. 3 4.67 0.67 0 i: extra hand support .
Balancing tasks
push rec. fr. behind push w. lean 5 6.2 0 0
push rec. fr. left push w. lean 9 9.3 0.11 0
inspect show sole w. sup. 2 11 0 0
rec. fr. lost balance on 1 leg 5 10.8 0 0.2
lean on table w. hands 4 16.25 1.25 0 i: lost hand support
Kneeling tasks
kneel down 4 8 0 0
kneel up 7 7.857 0 0
Totals 121 239.94 5.11 10.89
Percentages 2.13% 4.53%

Abbreviations: av. = average, w. = with, sup. = support, obst. = obstacle, fr. = from, rec. = recovery, i: incorrect, m: missed, d.f.s. = double foot support

marker on the human subject, we place one corresponding
virtual marker on the reference model.

Let U = (u1, ...,un) be an observation of the
3D positions of the n captured markers and x =
(px, py, pz, α, β, γ, θ1, ..., θm) the vector describing the pose
of the reference model, consisting of the root position and
rotation of the model and its m joint angle values. Addi-
tionally, let V(x) = (v1(x), ...,vn(x)) be the positions of
corresponding virtual markers as determined by the forward
kinematics of the model. The problem of determining the
pose of the MMM reference model for a given marker
observation U is then solved by minimizing

f(x) =
∑
i

(ui − vi(x))
2

while maintaining the box constraints for θ1, ..., θm given
by the joint limits of the reference model. For every motion
frame, this optimization problem is solved by using the
reimplementation of the Subplex algorithm [47] provided
by the NLopt library [48] for nonlinear optimization. Poses
of objects involved in a motion are reconstructed from
object markers in a similar way by using a joint-less six-
dimensional pose vector.

C. Extraction of Whole-Body Poses

Support poses of the human subject are detected by
analyzing the relation of the MMM reference model to
the floor and environmental elements. For this purpose, we
only consider objects which exhibit low movement during
the recorded motion as suitable environmental elements to
provide support. For every motion frame, we use the forward

kinematics of the reference model to calculate the poses of
the model segments that we consider for providing supports.
These model segments represent the hands, feet, elbows and
knees of the human body.

A segment s of the reference model is recognized as a
support if two criteria are fulfilled. First, the distance of s
to an environmental element must be lower than a threshold
δdist(s). Distances to environmental elements are computed
as the distances between pairs of closest points from the
respective models with triangle-level accuracy using Simox
[49]. Additionally, the speed of segment s, computed from
smoothed velocity vectors, has to stay below a threshold
δvel(s) for a certain number of frames, starting with the
frame where the support is first recognized. The thresholds
are chosen empirically: δvel = 200mm

s , δdist(Feet) =
δdist(Hands) = 15mm, δdist(Knees) = 35mm and
δdist(Elbows) = 30mm.

The support pose is defined by the contacts that are
providing support to the subject. We ignore parts of the
motion where the human body is not supported at all as
an empty support pose, e.g. during running. Also, some
practical assumptions are used, such as that a knee support
also implies a foot support.

The video attachment shows some of the motions that were
part of our evaluation along with detected support contacts
and the resulting support poses. We have manually validated
the segmentation method error by exploring frame by frame
the detected support segments, showing the results in Table I.
They show that about 4.5% of the poses are missed, but
the missed poses are always double foot supports (with



TABLE II
PERCENTAGES OF APPEARANCES AND TIME SPENT FOR EACH TRANSITION (%APPEARANCE, %TIME)

1Foot 1Foot-1Hand 2Feet 2Feet-1Hand 2Feet-2Hands 1Foot-2Hands Totals x pose

1Foot 4.38%, 5.69% 9.30%, 7.90% 22.90%, 25.56% 0.15%, 0.26% – 0.08%, 0.04% 36.81%, 39.44%

1Foot-1Hand 9.15%, 13.64% 1.81%, 2.26% 0.08%, 0.03% 12.24%, 16.59% 0.08%, 0.02% 0.15%, 0.02% 23.51%, 32.57%

2Feet 16.02%, 10.05% 0.15%, 0.04% × 3.48%, 2.23% 0.08%, 0.06% – 19.73%, 12.38%

2Feet-1Hand 0.23%, 0.07% 11.72%, 4.38% 4.61%, 5.31% × 0.98%, 0.15% – 17.54%, 9.92%

2Feet-2Hands – – – 0.83%, 1.22% × 0.68%, 0.75% 1.51%, 1.97%

1Foot-2Hands – 0.53%, 1.27% – – 0.38%, 2.45% × 0.91%, 3.72%

or without hand). Only 2.1% of the poses are incorrectly
detected.

IV. RESULTS

A. Statistical Analysis of the Detected Poses and Their
Transitions

Without taking into account kneeling motions, we have
recorded and analyzed 110 motions including locomotion,
loco-manipulation and balancing tasks listed in Table I. In
this section, we present some analysis on the most common
pose transitions and the time spent on them. We ignore
kneeling motions because we do not have enough data
yet to get significant results. In every motion, both the
initial and the final pose are double foot supports and the
time spent on these poses is arbitrary. Therefore, they have
been ignored for the statistical analysis. Without counting
them, we have automatically identified a total of 1323 pose
transitions lasting a total time of 541.48 seconds (9.02 min).
In Table II, each cell represents the transition going from the
pose indicated by the row name to the pose indicted by the
column name. In each cell, we show first the percentage of
occurrence of the transition with respect to the total number
of transitions detected, and secondly the percentage of time
spent on the origin pose before reaching the destination pose,
with respect to the total time of all motions. The last column
is the accumulation of percentages per each pose, and the
rows are sorted from the most to the least common pose.

It must be noted that the loop transitions 1Foot→1Foot,
and 1Foot-1Hand→1Foot-1Hand are mostly missed double
foot supports and we will not include them in the analysis.

According to Table II, the most common transitions are
1Foot→2Feet (22.90% of appearance) and 2Feet→1Foot
(16.02% of appearance). These are the same transitions of
walking that have been widely studied. Winter reported in
[50] that depending on slow or fast walking, the interval
of the time spent on 2Feet→1Foot (double foot support) is
11–19 frames2, while for 1Foot→2Feet (single foot support)
it is 38–52 frames. Although all our motions contain some
steps of normal walking, they also involve hand supports, and
therefore, these transitions may show different time behaviors
if they are part of a more complex set of transitions. We are
interested in observing similar long and short locomotion
transitions, but involving other poses. In addition, we find a

2All times are measured in frames, with motions recorded at 100 FPS.

third type of transition that usually lasts longer because it is
supporting a manipulation task. The transitions in Table II
where the time spent is proportionally larger than their fre-
quency can give us the intuition that they may be either long
locomotion transitions or support for manipulation tasks.

B. Analysis of the Time Spent per Transition
To study the time spent in each transition in more detail,

Fig. 3 shows the histograms of time spent in the most
common pose transitions. In yellow, we show all transitions
involved in locomotion tasks, and we can observe that the
histograms in (a), (b) and (f) show bimodal distributions.
For the first two cases, we could fit a mixture distribution
of 2 normals, with parameters N(µ = 11.76, σ = 8.60)
and N(µ = 53.89, σ = 11.35) for the plot (a) and N(µ =
15.9905, σ = 9.6776) and N(µ = 55.8507, σ = 8.7216) for
the plot (b), with a confidence probability of 0.969 and 0.944
respectively. This indicates that the 1Foot→2Feet transition
can play the role of a long locomotion transition with mean
53 frames, but can also be a short transition with times
around 11 frames, and similarly for (b). For the plot (f),
we could fit the two normals N(µ = 36.47, σ = 26.59) and
N(µ = 73.11, σ = 8.319), but with only 0.80 of confidence.
We need more data to verify these mean values. Still,
inspecting the histogram it is clear that the transition 1Foot-
1Hand→2Feet-1Hand can act as a long transition with mean
times of around 70 frames Other transitions like (c), (d), (g)
and (h) are clearly short transitions. Plot (c) corresponds to
2Feet→1Foot (the usual walking double foot support) that
for locomotion tasks is clearly on the short duration, with
76.8% of the cases below 20 frames (91% below 30).

In blue, we show the loco-manipulation tasks. These
tasks include walking, but also transitions for supporting
the manipulation task. Note that transitions to support the
manipulation are not very frequent because there is only one
per motion, while transitions for walking are the majority,
shown in plots (a) and (c). As expected, (a) shows long
locomotion transition types, while (c) shows short ones.
However, in (c) we see some long-lasting poses. Inspecting
the data task by task, we see that these happen in the
bimanual pick and place of the big box, because the double
foot pose supports the action of crouching to pick up the
box. In the remaining plots, we can see other transitions
supporting manipulation. For instance, the ones in plots (e)
and (f) correspond to some of the motions of leaning to
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Fig. 3. Histograms showing the occurrences of frames spent in each transition. Bins are of 10 frames each. Dashed lines at 50 frames and 100 frames
to clarify the different x axis scales.
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Fig. 4. Transition graph of whole-body pose transitions automatically generated from the analyzed motions. Labels on edges indicate the number of
transitions found of each type.

wipe, reach or place, where the subject uses a 1Foot-1Hand
to perform the task (as in Fig. 1-(b)), while in other lean
actions, the subject uses the 2Foot-1Hand pose, shown in
plot (g).

Finally, balancing tasks are plotted in red. They consist
mostly of very fast transitions because motions are very
fast, especially after pushes. As before, plots (a) and (c)
accumulate the poses of the walking parts of the motions.
In (b), the 200 frames lasting transitions correspond to the
balancing on one foot, lasting until the subject loses balance
and needs to lean with the hand. After that, the 1Foot-
1Hand pose is used until balance is recovered, showing
as long transitions in plot (e). Other transitions supporting
a task in plot (e) correspond to inspecting the shoe sole,
that is supported by a 1Hand-1Foot pose. We do not show
the histograms containing four supports because we do not
have enough instances of them, but they all happen during
balancing tasks.

The motions recorded for this work can be found in the
KIT Whole-Body Human Motion Database [11]3.

3See https://motion-database.humanoids.kit.edu/
details/motions/<ID>/ with ID ∈ {383, 385, 410, 412, 415, 456,
460, 463, 515, 516, 517, 520, 521, 523, 527, 529, 530, 531, 597, 598, 599,
600, 601, 604, 606, 607}.

C. Data-Driven Generation of a Transition Graph of Whole-
Body Poses

In [21], we proposed a full taxonomy of whole-body
support poses that was based on a combinatorial approach
considering all the relevant contacts with the body. The
current work has been inspired by our taxonomy, and one of
its objectives is to validate the transitions that we proposed.
However, we can only provide a partial validation, because
our theoretical taxonomy contained poses with holds (like
when hands grasp a handle) and also arm and forearm
supports, that do not appear in any of the motions analyzed
here. Also, we need more data on kneeling poses to reach
more of the four support poses.

Fig. 4 shows the automatically generated transition graph,
considering also the start and end poses of each motion.
Each edge corresponds to a transition, and their labels to
the number of times we have found it. Edges plotted in red
correspond to transitions where two simultaneous changes
of contacts occur. In our theoretical taxonomy [21], we
assumed that only one change of support should be allowed
per transition. While this is still desirable for robotics, it is
also obvious that some human transitions involve two contact
changes. For instance, in push recovery motions, humans

https://motion-database.humanoids.kit.edu/details/motions/<ID>/
https://motion-database.humanoids.kit.edu/details/motions/<ID>/
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Fig. 5. Output of the segmentation for one of the motions upstairs with handle. The segment shown in red represents the initial pose transition, that
has an arbitrary length. Blue segments represent transitions where the foot swings. Blue labels indicate transition durations. We can see that the human
alternates between single foot support swing and 1Foot-1Hand support swing using the handle.

usually lean on the wall using both arms at the same time
to increase security and robustness. Many of the red edge
transitions in Fig. 4 occur in balancing tasks.

In the transition graph shown in Fig. 4, we can quickly see
that red edges are of significantly lower frequency than the
black ones, except the loop edges in the 1Foot and 1Hand-
1Foot poses, that are caused by either jumps or missed
double foot supports. They correspond to the 4.5% transitions
missed by our segmentation method reported in Table I.

This data-driven transition graph is influenced by the type
of motions we have analyzed, using only one handle or one
hand support. Only balancing poses reach the four support
poses. In future work, we will analyze walking motions with
handles on both sides.

Fig. 5 shows the timeline of a motion where the subject
goes upstairs using a handle on his right side. In blue, we
show the long locomotion transitions. The supporting pose
for these transitions alternates between 1Foot-1Hand, used
to swing forward the foot not in contact, and 1Foot, used
to swing forward both the handle hand and the foot not in
contact. This is because we only provide one handle. Another
interesting thing to notice is that the short locomotion tran-
sitions appear in clusters, composed by a sequence of two
transitions. We have observed this in many of the motions
and we have observed that the order of the transitions
inside these clusters does not matter, just the start and end
poses. We believe that each cluster could be considered as
a composite transition where several contact changes occur.
As future work, we want to detect and model these clusters
to identify rules that allow us to automatically generate
sequences of feasible transitions according to extremities
available for contacts.

V. CONCLUSIONS AND FUTURE WORK

We have presented an analysis of support poses of more
than 100 motion recordings showing different locomotion
and manipulation tasks. Our method allowed us to retrieve
the sequence of used support poses and the time spent in
each of them, providing segmented representations of multi-
contact motions.

Although the most common pose transitions are the ones
involved in walking, we have shown that the 1Foot-1Hand
and the 2Foot-1Hand poses also play a crucial role in multi-
contacts motions. We have classified our data into short and
long locomotion transitions and transitions for supporting a

task, depending on the time spent on them. We have observed
that very short locomotion transitions are found in clusters
that can be grouped as complex transitions with more than
one contact change. The data-driven generated taxonomy
validates the transitions proposed in our previous work. We
believe that our motions segmented by support poses and
time spent per transition provides a meaningful semantic
representation of a motion.

This work opens the door to many exciting future di-
rections. First, we are interested in analyzing our motion
representations to find semantic rules that can help define
new motions for different situations, with the objective of
building a grammar of motion poses. Storing each transition
as motion primitives, we are also interested in performing
path planning at a semantic level based on support poses.

Finally, we are still assuming very simplified poses that
do not consider directions of support, represented by simple
sketch figures. However, for each class of poses there is an
infinite number of possible body configurations depending on
location and orientation of contacts. Future work directions
include finding the most relevant whole-body eigen-grasps,
that is, we will perform principal component analysis to
reduce the dimensionality of the space that can realize each
pose.

In conclusion, this work presents a step further in the
comprehension of how humans can utilize their bodies to
enhance stability for locomotion and manipulation tasks.
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