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Abstract—We address the problem of feature space dimen-
sionality reduction for the recognition of whole-body human
action based on Hidden Markov Models. First, we describe how
different features are derived from marker-based human motion
capture and define a total number of 29 features with a total
of 702 dimensions to describe human motion. We then propose
a strategy for a systematic exploration of the space of possible
subsets of these features and the identification of meaningful low-
dimensional feature vectors for motion recognition. We evaluate
our approach using a data set consisting of 353 motions grouped
into 23 different types of whole-body actions. Our results show
that a lower-dimensional feature space is sufficient to achieve a
high motion recognition performance and that, using just four
dimensions, we can achieve an accuracy of 94.76% on our data
set, which is comparable to feature vectors that consider a much
higher-dimensional feature like the joint angles.

I. INTRODUCTION

Recognizing human actions is an important research field
with major interest in areas which range from action under-
standing, imitation learning, natural human-robot interaction
to human motion analysis and rehabilitation robotics. Today,
state-of-the-art motion capture systems deliver an outstanding
performance in recording human motion, allowing the collec-
tion of large-scale data sets of human whole-body motion,
containing motion recordings for a variety of actions like the
ones shown in Fig. 1. However, the growing number of data
recorded also raises the question how this data can be classified
and categorized in an automatic manner. Hence, much effort
has already been put into developing motion recognition
systems that can classify human motion into classes which
correspond to different types of motions. The performance of
these systems crucially depends on the representation of the
motion data, i.e. which features are selected to constitute the
feature vector.

In this work, we investigate whether there may be features
useful for motion recognition that are not in common use
today. For this purpose, we establish a list of 29 features
categorized into six groups to describe whole-body human
motion, which includes both very common features like joint
angles, but also seldom considered features like the whole-
body angular momentum. Subsets of these features are then
used to constitute the feature vector in a motion recognition
system based on Hidden Markov Models (HMMs). In general,
it is preferable to reduce the dimensionality of this feature
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Fig. 1. Key frames from motions of the data set used for evaluation in this
paper (see Section V-A).

vector as much as possible, because such a dimensionality
reduction allows for computational advantages, e.g. shorter
training time, and reduces both the amount of data necessary
to train the system and the risk of overfitting during training
[1]. We therefore explore the space of possible subsets of
features in a systematic way with focus on low-dimensional
feature subsets. Our goal is to explore whether popular features
like joint angles are truly the best choice, or whether other
features or combinations thereof may allow for better motion
recognition in terms of recognition performance or run-time.

To the best of the authors’ knowledge, the problem of
feature selection for whole-body human motion recognition
has not been approached by a lot of authors. Freeman [2] pro-
vides a review of measures that can be used in filter methods
for feature selection (see Section IV), and also includes two
applications of the proposed methods to human whole-body
motion using the data set presented in [3] based on joint angles



and to hand gesture recognition from electromyography data.
Ren et al. [4] present a silhouette-based vision interface resting
upon an ensemble classifier using AdaBoost to select features.
Although HMMs are very commonly used to represent human
motion [5], [6], [7], [8], a large variety of other approaches
exist, such as Factorial HMMs [9], [3], Parametric HMMs
[10], [11], [12], neural networks [13], mixture models of
Gaussian and Bernoulli distributions [14], tree structures [15],
[16], Conditional Restricted Boltzmann Machines [17], [18],
and more. Since the question of how human motion can be
represented is a universal one and not limited to the learning
of HMMs for motion recognition, the results of this work may
be relevant for such other approaches as well.

The remainder of this paper is structured as follows. In
Section II, we describe how motion data is acquired, define
the features which we derive from captured motion data,
and outline the processing steps required to obtain them.
Then, in Section III, we discuss how HMMs can be used to
recognize human motion. After that, we explain our strategy
to find useful subsets of the computed features for motion
recognition in Section IV. In Section V, we present the results
of our evaluation and discuss our findings. Finally, we draw
conclusions from the evaluation in Section VI.

II. WHOLE-BODY HUMAN MOTION FEATURES

A. Acquisition and Representation of Whole-Body Motion

In this work, we are considering motion data that has been
acquired by marker-based motion capture. In our evaluation
data set (see Section V-A), we are using motion recordings
freely available from the KIT Whole-Body Human Motion
Database [19]. These motion recordings are based on the KIT
reference marker set, which consists of a total number of 56
markers, placed at characteristic anatomical landmarks of the
human subject. The capture procedures and the marker set are
described in [19] and online1.

In addition to raw trajectories of the motion capture markers,
we are also considering motion features based on the Master
Motor Map (MMM) framework [20], [21]. The MMM pro-
vides an open-source framework for the representation and
the analysis of human motion. Its fundamental goal is to
provide a unifying representation for human motion, and to
establish procedures for the reconstruction of motion in this
representation from different input data, such as marker-based
or marker-less motion capture systems. The procedures in the
MMM framework to achieve this reconstruction from marker-
based motion capture data are described in more detail in [21].
The result of the motion reconstruction are the joint angles
and the 6D root pose (location and rotation) for every frame
of the captured motion. This motion representation is based
on the MMM reference model, which provides a model of
the human body with kinematic and dynamic specifications
derived from existing biomechanics literature by Winter [22]
and de Leva [23]. The kinematic model offers 104 degrees of
freedom (DoF): 6 for the root pose, 52 for the body torso,

1https://motion-database.humanoids.kit.edu/marker_set/

TABLE I
LIST OF THE FEATURES CONSIDERED IN THIS WORK, INCLUDING THEIR

RESPECTIVE NUMBERS OF DIMENSIONS

Feature Group Feature Name Dimensions

Marker Features

marker pos 56 · 3 = 168
marker vel 56 · 3 = 168
marker vel norm 1
marker acc 56 · 3 = 168
marker acc norm 1

Joint Features

joint pos 40
joint vel 40
joint vel norm 1
joint acc 40
joint acc norm 1

Root Pose Features

root pos 3
root vel 3
root vel norm 1
root acc 3
root acc norm 1
root rot 3
root rot norm 1

Center of Mass (CoM)
Features

com pos 3
com vel 3
com vel norm 1
com acc 3
com acc norm 1

End Effector Features

end effectors pos 4 · 3 = 12
end effectors vel 4 · 3 = 12
end effectors vel norm 4
end effectors acc 4 · 3 = 12
end effectors acc norm 4

Angular Momentum
Features

angular momentum 3
angular momentum norm 1

extremities, head, and eyes, and 2 · 23 for both hands. The
dynamic model provides center of mass (CoM) and inertia
tensor for every segment of the human body.

Table I provides an overview of all the considered features.
We have categorized the features into the six groups shown in
the first column of Table I. In the next subsections, we will
explain each of them in more detail following the same order.

B. Marker Features

The feature marker pos describes the Cartesian positions of
the markers attached to the human subject. From the position
pi
t of the marker i at time step t given by marker pos, we can

approximate the velocity vector vi
t using the common central

difference for numerical differentiation:

vi
t =

pi
t+1 − pi

t−1

2∆t
(1)

in which ∆t represents the duration of one time step. The fea-
ture marker vel then describes the Cartesian velocity vectors
of the 56 markers. marker vel norm combines all velocity
vectors into a scalar value using the Euclidean norm. In a
similar way, from marker vel the features marker acc and
marker acc norm are computed, which describe the acceler-
ations of the markers.



C. Joint Features

The joint pos feature consists of the joint values for the
40 joints of the MMM reference model that are used to
represent human whole-body motion (e.g. fingers and eyes
are excluded). joint vel describes the joint angle veloci-
ties, calculated from the joint trajectories using equation 1.
joint vel norm denotes the norm of all joint velocities, provid-
ing an indication for the current total movement in joint space.
In addition to the velocities, joint accelerations (joint acc) and
acceleration norm (joint acc norm) are computed as well.

D. Root Pose Features

Together with the joint values, the motion of the MMM
model also provides us with the 6D pose (location and rota-
tion) of the model root, which is located inside the hip of the
model. root pos describes the Cartesian position of the model
root, root vel its velocity vector calculated using equation 1,
and root vel norm the norm of the velocity vector, providing
an indication for how fast the subject is moving. Similarly,
root acc provides the acceleration vector and root acc norm
the acceleration norm. The rotation of the model root is
described by root rot as roll-pitch-yaw angles. The feature
root rot norm represents the norm of root rot, giving an
indication of how much the model root is turned.

E. Whole-Body Center of Mass (CoM) Features

Given the motion in the MMM format defined by joint
angles and 6D root pose, additional features can be derived
from the MMM model and the associated kinematic and
dynamic specifications for the human body.

The dynamic model allows us to compute the CoM of the
human body, which is represented by the feature com pos. At
first glance, the CoM seems very similar to root pos, however,
unlike the CoM, the root position is fixed to a specific point
inside the hip of the model. Therefore, depending on the
motion type, the CoM trajectories differ strongly from the
model root trajectories. Take, for example, upper-body domi-
nant motions like waving, where the model root does not move
significantly, in contrast to the CoM. For bowing, the model
root fixed moves slightly backward, while the CoM moves in
the opposite direction, i.e. forward and downward. Velocity
and acceleration vectors and the corresponding scalar speed
and acceleration values of the CoM (com vel, com vel norm,
com acc, and com acc norm) are approximated using equa-
tion 1.

F. End Effector Features

From the MMM model, we can also derive the locations
of the extremities as a virtual tool center point located in
the center of the hand palm or the posterior of the foot
respectively. end effectors pos provides the positions for all
four extremities of the human body. Similarly to before,
end effectors vel, end effectors vel norm, end effectors acc,
and end effectors acc norm can be computed using equa-
tion 1.

G. Whole-Body Angular Momentum Features

The angular momentum is a physical measure that repre-
sents the rotational equivalent to linear momentum of a system
in 3D space. The characteristic and well-studied progression of
the angular momentum for certain motion types like walking
[24], [25] makes this measure a potentially very promising
feature for the recognition of these motions.

The angular momentum feature represents the three-
dimensional whole-body angular momentum L along the three
axes of the model coordinate system. From the N segments
of the MMM model, it can be computed as follows:

L =
N∑
i=1

[
mi(r

c
i × vc

i ) + Iciωi

]
, L ∈ R3 (2)

with

rci = rCoMi − rCoM

vc
i = ṙCoMi − ṙCoM .

The first part of the sum in equation 2 considers the angular
momenta created by the orbital rotation of each segment
around the CoM. mi describes the mass of segment i, rci its
position, and vc

i its velocity, both given with respect to the
CoM. × denotes the cross product. The spin of each segment
is taken into account by the second part of the sum, which is
computed by forming the product of its inertia tensor Ici and
its angular velocity ωi. The angular momentum norm feature
represents the norm of the angular momentum, which provides
an indication for the total spin of the human body.

H. Feature Processing

Additional processing steps are necessary for the computa-
tion of the features mentioned above to make these features
useful for motion recognition.

1) Smoothing: Marker trajectories from the motion capture
system and the basic MMM features provided by the MMM
motion reconstruction algorithm might contain noise or jitter.
Since such errors are amplified by the repeated differentiation
used in equation 1 to calculate velocities and accelerations,
we use a moving average filter with a window size of 3 to
smooth the data.

2) Normalization: It is important to note that motion fea-
tures defined in Cartesian space need to be normalized to
be useful. For example, trajectories of the model root or
the CoM for the exactly same motion look very different
when observed in the global coordinate system if the starting
location or orientation is different. Therefore, these features are
normalized with respect to the initial root pose of the motion.
Given the 4 × 4 transformation matrix T0 of the model root
pose for the first frame of the motion, the Cartesian feature x
given in 4D homogeneous coordinates is normalized as:

x̂t = T−1
0 xt.

In a similar way, end effectors pos is normalized with respect
to the current root pose of the model.



3) Scaling: When comparing joint angles in radians and
Cartesian measures in millimeters, it is obvious that the
described features live on different scales. As we will see in
Section III, this can become a problem when k-means cluster-
ing is used to initialize the emission distribution parameters
of an HMM, since the Euclidean distance measure used by
the clustering algorithm does not consider the different extent
of the features across dimensions. Therefore, the scalar x for
each dimension of a feature is scaled roughly to the range
[−1, 1]:

x̂t = 2 · xt − xmin

xmax − xmin
− 1.

For each dimension of each feature, xmin and xmax are con-
stant and determined from a sufficiently large set of training
data.

III. MOTION RECOGNITION WITH HMMS

To recognize human motion, we are building upon Hidden
Markov Models (HMMs), which have been proven to be very
suitable for the modeling of time series data, such as human
motion [26], [27]. The dynamics of the stochastic process
underlying the HMM is based on a single unobservable latent
variable that can take on K discrete states. Each of these states
is associated with a probability distribution and the emission
distribution that models the observation. The transition prob-
abilities between the K states and the parameters of the K
emission distributions are learned when the HMM is trained.
A more in-depth discussion of HMMs and their use can be
found in existing literature like [28], [29].

In this work, we selected hyper-parameters for the HMMs
that are popular in literature where HMMs are already used to
represent human motion [7], [30], and verified this choice by
own experiments. More concretely, we are using HMMs with
observations modelled as Gaussian distributions, a left-to-right
(Bakis) topology and K = 8 states. The covariance matrices of
the HMMs are constrained to be diagonal. For training, means
and covariances of the emission distributions of the HMMs are
initialized using the k-means algorithm to cluster the data into
K clusters, corresponding to HMM states. Transition and start
probabilities of the HMMs are initialized uniformly. To learn
the HMM parameters, we run the Baum-Welch algorithm for
10 iterations, or until convergence (∆log-likelihoods < 10−2).

To solve the multi-class classification problem of motion
recognition, where one motion should be assigned to exactly
one of the learned motion classes, we are training one HMM
for each motion class using the motions associated with that
class. To classify an unseen motion, we then determine its
log-likelihood under each of the trained HMMs and assign
the motion to the class which belongs to the HMM with the
highest log-likelihood.

IV. FEATURE SELECTION

In literature from machine learning, approaches for feature
selection are commonly grouped into three different classes:
embedded methods, filter methods, and wrapper methods [1].
Embedded methods perform feature selection as part of the

training process and are therefore specific to the learning al-
gorithm. While solutions for certain classifiers such as Support
Vector Machines are well-established, we do not know of any
embedded method that can readily be used for an HMM with
time series data. Filter methods use a given filter measure to
rank individual features without actually training the classifier,
which makes them potentially very efficient. A very large
number of such filter measures is available and selecting a
good one is crucial when using such a method [31]. However,
the choice of the filter measure can be challenging as it highly
depends on the classifier to be used subsequently and the data
set. Also, since filter methods consider individual features,
they cannot recognize relationships between features, which
can result in the selection of redundant features. Then, there
are wrapper methods [32] that treat the learning algorithm as
a black box, evaluating the usefulness of a feature set by the
classification performance of the classifier trained with this
feature set. A search strategy must be chosen to efficiently
search the space of feature subsets (FSS), because consid-
ering all possible FSS is computationally rarely possible.
Wrapper methods have the advantage that they can consider
relationships between given features when determining good
subsets of features, e.g. only using one feature from a set of
highly correlated, therefore more or less redundant, features.
They have the disadvantage of a high computational effort
because every evaluation requires model training, and the risk
of overfitting if not enough data is provided for the given set
of features.

Due to the considerations given above, we are using the
wrapper method for feature selection in this paper. Of course,
given the numbers of features available, it is computationally
not feasible to perform an exhaustive search in the space of
possible FSS, since 2N − 1 possible FSS can be constructed
from N features. Thus, more sophisticated metaheuristics are
necessary to explore this space. Traditional works for feature
selection often employ a strategy of forward selection, that
starts with an empty FSS and iteratively adds the feature to
the FSS that increases recognition performance most. This
approach however has two downsides. First, the algorithm
does not consider the dimensionality of the available features,
and will prefer a very high-dimensional feature over a low-
dimensional one, even if the difference in terms of score
improvement is very small. Hence, the resulting FSS usually
corresponds to a high-dimensional feature vector. Second, this
approach represents a greedy algorithm in that only the single
best FSS is considered in each iteration, which makes it likely
that the globally best FSS may be missed.

Therefore, in this work, we use a modified forward explo-
ration strategy that is given in pseudocode in Algorithm 1. Our
algorithm iterates from 1 to a given maximum dimensionality
(line 3), which can be as high as the cumulative number of
dimensions of all available features (702 in our case). In iter-
ation k, our algorithm considers only FSS with k dimensions.
To build such FSS, we are taking previously evaluated lower-
dimensional FSS from all past iterations and add a single
not yet contained feature to them in order to create FSSs of



Algorithm 1 N-Best Feature Subset Exploration
1: possibleFeatures← {...} (see Table I)
2: fssForDim[0]← {∅}
3: for curDim← 1 to maxDim do
4: // Build feature subsets of dimensionality curDim
5: fssToEvaluate← {}
6: for pastDim← 0 to curDim− 1 do
7: for all oldFss ∈ fssForDim[pastDim] do
8: for all feature ∈ possibleFeatures do
9: if pastDim + dim(feature) = curDim

and feature 6∈ oldFss then
10: newFss← oldFss + {feature}
11: add newFss to fssToEvaluate
12: end if
13: end for
14: end for
15: end for
16:
17: // Evaluate feature subsets in fssToEvaluate
18: for all fss ∈ fssToEvaluate do
19: for round← 1 to 3 do
20: split data set into training and test folds
21: train HMMs with data from training folds
22: classify motions from test fold with HMMs
23: end for
24: compute and save weighted average of the

F1 scores for all HMM classifiers
25: end for
26:
27: // Keep n-best feature subsets of dim. curDim
28: fssForDim[curDim]← n-best(fssToEvaluate)
29: end for

dimensionality k (lines 6-15). Then, the performance of these
newly created FSS for motion recognition is determined (lines
18-25). For this purpose, we are considering the F1 score,
which is a well-established measure to estimate classification
performance based on precision and recall of a classifier [33].
For the evaluation of a given FSS, a stratified 3-fold cross
validation is used, in which the data set is equally divided into
three subsets, the folds (line 20). In three successive rounds,
each of the three folds is used once as the test set, with the
other two folds being used to train the model (lines 21-22).
Stratification ensures that each fold contains a distribution of
the motion classes that is representative for the whole data
set [34]. At the end of the three rounds, every motion in
the data set has been used for testing exactly once and the
F1 score is calculated using the classification results from all
rounds. Since we are training one HMM per motion type,
we compute the weighted average of the F1 scores for each
HMM to get a scalar measure for the recognition performance
of the evaluated FSS (line 24). The contribution of each F1

score to this average is proportional to the support of the
corresponding motion type, i.e. the number of representative
motions for this type contained in the data set. Similarly to

TABLE II
MOTION DATA SET USED FOR EVALUATION (IDS CORRESPOND TO THE

RECORDS IN THE KIT WHOLE-BODY HUMAN MOTION DATABASE)

Motion Type # Rec. ID(s)
Walk 49 318, 362, 395, 452, 467
Run 41 324, 364, 399, 426, 533
Turn 59 326, 327, 402, 403, 445, 446

Pushed from Behind 9 476, 477, 478
Throw 10 573, 581
Kneel 5 515

Bow 10 582, 609
Kick 20 610, 611, 612, 613

Squat 5 616
Punch 10 617, 618
Stomp 10 619, 620
Jump 25 621, 622, 623, 624, 625

Golf Putt 5 626
Golf Drive 6 627

Tennis Smash 10 628, 629
Tennis Forehand 10 630, 631

Wave 15 633, 634, 635
Play Guitar 11 636, 637
Play Violin 10 638, 639

Stir 11 640, 641
Wipe 11 642, 643

Dance Waltz 6 644
Dance Cha-Cha-Cha 5 645

— Total — 353

the F1 scores themselves, this measure is from the range [0, 1],
with higher values indicating better recognition performance.
The best n = 10 of the evaluated FSS are kept in each iteration
(line 28) as part of the result of the algorithm and to create
higher-dimensional FSS in future iterations.

V. EVALUATION

A. Data Set

The data set used for evaluation comprises 353 different
motion recordings captured from 9 different subjects (6 male,
3 female), and has been recorded using a passive optical
Vicon MX motion capture system [35] consisting of ten T10
cameras. Table II provides an overview of the different motion
types used for evaluation with the corresponding number
of recordings available. Fig. 1 shows manually selected key
frames from some exemplary motions. We tried to execute
motions in different modalities, e.g. switching between hands
for single-handed motions like punch, golf, or tennis. For
periodic motions such as stirring or dancing, we varied the
number of repetitions across the recorded trials.

All motions in our data set can be freely retrieved from
the KIT Whole-Body Human Motion Database [19], avail-
able as raw marker data in the C3D file format and mo-
tions in the MMM format, as well as the correspond-
ing video recordings. To alleviate finding them, the di-
rect URL https://motion-database.humanoids.kit.edu/

details/motions/<ID>/ can be used in conjunction with the
respective IDs given in Table II.



TABLE III
BEST FEATURE SUBSETS PER DIMENSIONALITY FROM ALGORITHM 1

D. Feature Subset F1 Score Accuracy
1 marker vel norm 51.67% 54.45%
2 com vel norm, marker vel norm 82.28% 82.20%
3 angular momentum norm,

com vel norm, marker vel norm
88.66% 88.48%

4 com vel, joint vel norm 94.76% 94.76%
5 com acc norm, com vel,

marker vel norm
94.18% 94.24%

6 com vel, com vel norm,
marker vel norm, root vel norm

94.24% 94.24%

7 angular momentum norm, com vel,
joint vel norm, marker vel norm,
root vel norm

94.27% 94.24%

8 com vel, end effectors vel norm,
joint vel norm

95.77% 95.81%

9 com vel, end effectors vel norm,
joint vel norm, root vel norm

95.28% 95.29%

10 com acc norm, com vel,
com vel norm,
end effectors vel norm,
joint vel norm

95.75% 95.81%

11 com pos, com vel,
end effectors vel norm,
joint vel norm

95.97% 96.34%

12 angular momentum, com vel,
end effectors vel norm,
marker vel norm, root acc norm

96.32% 96.34%

13 com vel norm, end effectors vel 97.32% 97.38%
14 end effectors vel, marker vel norm,

root rot norm
97.87% 97.91%

15 com acc norm, com vel norm,
end effectors vel, root vel norm

97.89% 97.91%

B. Experimental Results

As described in Section IV, the evaluation of a given
FSS consists of three cross-validation rounds. In each round,
HMMs for each of the motion types are learned from the
training fold, and then used to compute the log-likelihoods
under each HMM for the motions in the respective test fold.
Depending on the dimensionality of the feature vector, such
an evaluation takes approximately between 15 and 90 seconds.
Computation of all results presented in this section then takes
around eight hours. In the following, in addition to the F1

scores used as the measure for feature selection, we also
provide values for the recognition accuracy, defined as the
percentage of motions that are assigned to the correct motion
type by the system.

Table III shows the results of our feature selection algorithm
and provides the best found FSS for every given dimension-
ality of the feature vector up to 15 dimensions. We verified
the validity of our approach by running an exhaustive search
considering all FSS with at most five dimensions, and can
confirm that Table III indeed provides the best possible FSS
for these dimensionalities. Since this exhaustive search already
requires 16055 FSS to be evaluated and thus takes half a
day even in a parallelized implementation, it is not feasible
to perform such a validation for higher-dimensional FSS.

As explained in Section IV, our metaheuristics used for
search is not strictly greedy, but considers the ten best FSS
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Fig. 2. F1 scores for the ten best FSS of every dimensionality found by
Algorithm 1, up to 15 dimensions. The X axis ranks the FSS of a given
dimensionality from the best to the 10th best.

TABLE IV
COMPARISON OF SELECTED FEATURE SUBSETS, ALSO PROVIDING THE

TIME NECESSARY TO TRAIN THE SYSTEM

Feature Subset Dim. F1 Score Accuracy Tr. T.

com vel,
joint vel norm

4 94.76% 94.76% 19s

com vel,
joint vel norm,
end effectors vel norm

8 95.77% 95.81% 21s

root pos, root rot 6 87.17% 87.54% 20s
end effectors pos 12 95.22% 95.29% 25s
end effectors vel 12 94.15% 94.05% 25s
joint pos 40 87.17% 88.10% 39s
joint vel 40 86.84% 86.97% 48s
marker pos 168 90.29% 90.37% 108s
marker vel 168 94.44% 94.62% 120s

for every dimensionality to provide a broader exploration of
the space of possible FSS. Fig. 2 shows the F1 scores of
these ten best FSS, again for feature vectors with up to 15
dimensions. As can be seen, starting with five dimensions,
recognition performance does not significantly diminish within
these ten best FSS, indicating that a larger number of “good”
FSS exist that can provide a comparable performance.

Table IV compares two of the FSS shown in Table III to
manually selected FSS that are commonly used for motion
recognition. In addition to F1 score and accuracy, we also
provide the time required for training, accumulated over the
three cross-validation rounds. From the manually selected FSS,
we can see that using joint angles as a feature does not provide
a performance comparable to our selected FSS. However,
considering the positions of the end effectors provides a feature
that works quite well on our data set, which is not that
surprising, given the nature of whole-body motion and the
motion types used for evaluation. Although the results cannot
be shown here for space reasons, an evaluation of all features



even showed that end effectors pos is the best of all of our
implemented features, if each feature is evaluated in isolation.
It should be noted though that the normalization described
in Section II-H2, i.e. representation of end effector positions
with respect to the model coordinate system, is required to
make this feature so useful. Looking at the first two low-
dimensional FSS listed in Table IV that have been found by
our search strategy, we can see that both offer a performance
comparable to or even better than using end effector positions,
the whole set of marker velocities, or all the other shown high-
dimensional features. Because these FSS use less dimensions
(4 and 8) to represent the motion, they take less time for
training, and should also require less training data and exhibit
a reduced risk of overfitting.

We noticed during our evaluation that, aside from end
effector positions and velocities, the whole-body center of
mass (CoM) seems to be a very significant feature for the
recognition of human whole-body motion. Indeed, almost
all of the FSS found by our exploration, which represent
the ten best FSS per dimensionality, contain at least one of
the features describing the velocity of the CoM (com vel or
com vel norm). In general, for vector quantities like velocity
or acceleration vectors, it often seems to be sufficient to use
the norm of the vector as a scalar feature instead of the vector
itself, indicating that a large portion of the informative value of
these features is already provided by the magnitude of motion
and not its direction. Also, while the angular momentum does
occur in some of the selected FSS, it does not seem to be as
useful as we initially thought. One possible explanation for
this is that only a minority of the motions used in our data
set, e.g. walking, golf drive, or tennis smash, exhibit enough
whole-body drive to render the angular momentum a useful
feature.

C. Future Work

In the future, we are planning to evaluate our approach
with larger data sets and to investigate whether our findings
generalize to other problems such as multi-label classification,
where one motion can be assigned to an arbitrary number
of labels. Also, it would be interesting to consider a motion
recognition system using Factorial Hidden Markov Models
[9] with the sequential training algorithm presented in [3],
although the higher training time might require a modified
exploration strategy.

Since we considered marker positions and joint angles only
as one single feature respectively, it remains an open question
if there are markers or joints that are less important for
motion recognition and can thus be left out to reduce the
dimensionality. Furthermore, we want to evaluate additional
features for the description of human motion, e.g. features
based on support contacts [36] or features based on the
effort keys presented in [16], which are derived from Laban
Movement Analysis [37].

VI. CONCLUSIONS

In this paper, we showed that it is possible to achieve a
high performance for whole-body human motion recognition
with using a low-dimensional representation of the motion as
the feature vector. As mentioned in the introduction, such a
dimensionality reduction allows for computational advantages
and also reduces the amount of training data needed. We
started by defining 29 features with a total number of 702
dimensions that can be used to represent human whole-body
motion. Then, we proposed an exploration strategy to search
the space of all possible feature subsets for meaningful low-
dimensional subsets of features. Our evaluations showed that
there exist a large number of promising low-dimensional
feature subsets and that, given the right choice of features, a
feature vector consisting of just eight dimensions is sufficient
to outperform existing higher-dimensional features for motion
recognition tasks, like the positions or velocities of joints or
markers.
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